
EECE.4810/EECE.5730: Operating Systems
Spring 2017

Homework 3 Solution

1. (16 points) Consider the following set of processes, with the length of the CPU-burst time

given in milliseconds:

Process Burst Priority
 P1 20 4
 P2 5 3
 P3 30 2
 P4 2 3
 P5 5 1

a. (12 points) Assume the processes arrived in the order P1, P2, P3, P4, P5, all at time 0.

What is the turnaround time (i.e., time of completion) of each process for each of the following
four scheduling algorithms: FCFS (First Come First Serve), Round Robin (quantum=1), SJF
(Shortest Job First), and a non-preemptive priority (a smaller priority number implies a higher
priority)?

Solution: The solutions are shown below, with each column representing a scheduling metric,
and the start/end times for each process shown. The turnaround time for each is the end time,
shown in bold, since all processes arrive at time 0. Remember that, as with the example in class,
a process with a burst time of 1 starts and ends in the same cycle. You may have used slightly
different notation.

In most cases, processes run to completion once they have started, with round robin being the
only preemptive scheme shown in this problem. In round robin, all 5 processes alternate, with P4
finishing after two cycles (time 9), P2 (time 20) and P5 (time 22) finishing after 5 cycles, P1
finishing after 20 cycles (time 51), and P3 finishing after 30 cycles (time 62).

Process FCFS RR SJF Priority
P1 1 à 20 1 à 51 13 à 32 43 à 62
P2 21 à 25 2 à 20 3 à 7 36 à 40
P3 26 à 55 3 à 62 33 à 62 6 à 35
P4 56 à 57 4 à 9 1 à 2 41 à 42
P5 58 à 62 5 à 22 8 à 12 1 à 5

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 3 Solution

 2

b. (4 points) For each of the four scheduling algorithms listed above, state whether your answer
would have changed if each process arrived 1 millisecond apart (P1 at time 0, P2 at time 1, etc.)
and briefly explain why. (Note: You do not have to determine the turnaround time for each
process with varying arrival times; you simply have to explain if your answer changes and why.)

Solution: With varying arrival times, P1 always runs first, since there are no other jobs to choose
from at time 1. Therefore, your answer will change for those metrics that would have run
something else first, namely shortest job first (SJF) and priority scheduling. Scheduling metrics
that ran P1 first even when all five processes were available do not change, so FCFS and round
robin give the same results.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 3 Solution

 3

2. (9 points) Assume you have a multi-programmed system managing main memory using a
base and bounds scheme. You have the following lists of holes and address space requests,
each of which exists in the order shown:

Available holes: 500 KB, 200 KB, 350 KB, 750 KB, 125 KB
Address space requests: 300 KB, 175 KB, 400 KB, 200 KB, 95 KB

How would these address spaces be placed using (a) first fit, (b) best fit, and (c) worst fit
allocation? As part of your solution to each part, show the list of remaining holes after all
address spaces are placed.

Solution: First, the solution for (a) first fit:

Space request Hole used Remaining holes (modified hole in red)
300 KB 500 KB 200 KB, 200 KB, 350 KB, 750 KB, 125 KB
175 KB 200 KB 25 KB, 200 KB, 350 KB, 750 KB, 125 KB
400 KB 750 KB 25 KB, 200 KB, 350 KB, 350 KB, 125 KB

200 KB 200 KB 25 KB, 350 KB, 350 KB, 125 KB
(200 KB hole completely filled)

95 KB 350 KB 25 KB, 255 KB, 350 KB, 125 KB

Next, the solution for (b) best fit:

Space request Hole used Remaining holes (modified hole in red)
300 KB 350 KB 500 KB, 200 KB, 50 KB, 750 KB, 125 KB
175 KB 200 KB 500 KB, 25 KB, 50 KB, 750 KB, 125 KB
400 KB 500 KB 100 KB, 25 KB, 50 KB, 750 KB, 125 KB
200 KB 750 KB 100 KB, 25 KB, 50 KB, 550 KB, 125 KB
95 KB 100 KB 5 KB, 25 KB, 50 KB, 550 KB, 125 KB

Finally, the solution for (c) worst fit:

Space request Hole used Remaining holes (modified hole in red)
300 KB 750 KB 500 KB, 200 KB, 350 KB, 450 KB, 125 KB
175 KB 500 KB 325 KB, 200 KB, 350 KB, 450 KB, 125 KB
400 KB 450 KB 325 KB, 25 KB, 350 KB, 50 KB, 125 KB
200 KB 350 KB 325 KB, 25 KB, 150 KB, 50 KB, 125 KB
95 KB 325 KB 230 KB, 25 KB, 150 KB, 50 KB, 125 KB

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 3 Solution

 4

3. (10 points) On a system using segmentation to manage main memory, the segment table for
the currently running process is listed below:

Segment # V Base Bounds Access

0 1 1020 500 read

1 0 74 12 read/write

2 1 19 78 read/write

3 1 4810 5730 read

4 1 3220 2160 read/exec

For each of the given memory accesses, determine if (i) the access is valid, and (ii) what the
physical address is for each valid access. If the access is invalid, briefly explain why.

Solution notes: Remember that:

• Accesses can be invalid for one of three reasons: the segment is not in physical memory
(V = 0), the offset is greater than the bound for that segment, or the process does not have
the necessary access rights (for example, writing a read-only segment)

• For a valid access, the physical address is simply the segment base address + offset from
the virtual address

a. Read from virtual address 2, 16

Solution: (i) Access is valid, (ii) physical address is 16 + 19 = 35

b. Write to virtual address 1, 10

Solution: (i) Access is invalid—segment is not in physical memory (V = 0)

c. Write to virtual address 3, 5000

Solution: (i) Access is invalid—process only has read permission to segment 3

d. Read from virtual address 0, 600

Solution: (i) Access is invalid—offset is greater than bound for segment 0 (600 > 500)

e. Read from virtual address 4, 2000

Solution: (i) Access is valid, (ii) physical address = 2000 + 3220 = 5220

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 3 Solution

 5

4. (15 points) On a system using paging to manage main memory, the currently running process
uses the page table below:

Virtual
page # Valid bit Reference

bit Dirty bit Frame #
0 1 0 0 5
1 1 0 1 0
2 0 0 0 --
3 1 1 0 3
4 0 0 0 --
5 1 1 1 2
6 0 0 0 --
7 1 1 0 1

a. (5 points) Which pages above are candidates to be evicted on a page fault? Which, if any,

are better candidates to evict?

Solution: Any valid page with reference bit = 0 is a candidate for eviction—pages 0 and 1. Page
0 is arguably a better candidate, as it is not dirty and therefore would not require a write to disk.

b. (10 points) Assuming 8 KB pages, what physical addresses would the virtual addresses below
map to? Note that some virtual addresses may not have a valid translation, in which case you
should note that address causes a page fault.

Solution notes: Note that 8 KB = 213 byte pages imply a 13-bit offset, meaning the page number
is the upper 3 bits of the virtual address. In each solution below, the page number is underlined,
as is the frame number that replaces it in the physical address.

• 0xABCD
Solution: 0xABCD = 1010 1011 1100 1101 à page #5, which maps to frame #2
 à physical address = 0100 1011 1100 1101 = 0x4BCD

• 0x1792
Solution: 0x1792 = 0001 0111 1001 0010 à page # 0, which maps to frame #5
 à physical address = 1011 0111 1001 0010 = 0xB792

• 0x4680
Solution: 0x4680 = 0100 0110 1000 0000 à page #2, which is invalid à no physical address

• 0x5701
Solution: 0x5701 = 0101 0111 0000 0001 à page #2, which is invalid à no physical address

