
EECE.4810/EECE.5730: Operating Systems
Spring 2017

Homework 2 Solution

1. (15 points) A system with two dual-core processors has four processors available for

scheduling. A CPU-intensive application (e.g., a program that spends most of its time on
computation, not I/O or memory accesses) is running on this system. All input is performed
at program start-up, when a single file must be opened and read sequentially. Similarly, all
output is performed just before the program terminates, when the program results must be
written sequentially to a single file. Between startup and termination, the program is entirely
CPU-bound (e.g., only executing instructions). Your task is to improve the performance of
this application by multithreading it. Specifically, you must determine:

• (7 points) How many threads will you create to handle input and output? Briefly explain.
Solution: Since the file must be accessed sequentially, the work of reading and writing it cannot
reasonably be parallelized, and only a single thread should be used for each of these tasks.

• (8 points) How many threads will you create for the CPU-bound portion of the
application? Briefly explain.

Solution: The CPU-bound portion should be divided evenly among the four processors, so four
threads should be created for this part of the program. Fewer than four would waste processor
resources, while more threads would be unable to run simultaneously.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 2 Solution

 2

2. (10 points) Consider the code segment below. The thread_create() function starts a
new thread in the calling process. (For the purpose of this problem, you can ignore the lack
of arguments to that function.) How many unique processes are created? How many unique
threads are created?

 pid_t pid;

1 pid = fork();
 if (pid == 0) { // Child process
2 fork();
3 thread_create(. . .);
 }
4 fork();

Solution: According to the textbook solution to this problem, this code segment creates a total of
six processes (including the original one) and two threads, as described below:

• The initial call to fork() (labeled “1” above) creates a copy of the original process (2
processes at this point)

• The second call to fork() (labeled “2” above) is executed only by the child process
from the first fork() call. (3 processes at this point)

• There are now two processes executing the code inside the if statement, meaning both of
those processes call thread_create() (3 processes, 2 threads)

o What should have been made clear in the original assignment is that each newly
created thread starts a different function than the one currently executing—one of the
arguments to a thread_create() function is a pointer to the function to begin
executing. The threads therefore don’t move on to the last fork() call.

• All three processes execute the final call to fork() (labeled “4” above), so each process
copies itself at that point (6 processes, 2 threads)

However, Peter brought to my attention the fact that the above solution does not account for the
fact that each process starts as a single thread of execution. A better solution would be to say that
this code segment creates a total of six processes and eight threads (two threads created by calls
to thread_create() and six threads corresponding to the six single-threaded processes).

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 2 Solution

 3

3. (15 points) Consider the code example for allocating and releasing processes shown below.
Note that the functions are not complete—comments show where detailed code would be
required to allocate and release process resources. This code would be part of the kernel.

#define MAX_PROCESSES 255
int number_of_processes = 0;

/* An implementation of fork() would call this function */
int allocate_process() {
 int new_pid;

 if (number_of_processes == MAX_PROCESSES)
 return -1;
 else {

 // Code to allocate process resources and assign new_pid

 ++number_of_processes;
 return new_pid;
 }
}

/* An implementation of exit() would call this function */
void release_process() {

 // Code to release process resources

 --number_of_processes;
}

a. (7 points) Identify the race condition(s) in these two functions, assuming each function could

be called by one (or more) kernel threads.. (In other words, determine what operation(s)
involving shared data depend on the timing or ordering of different threads.) Give an
example of the race condition causing incorrect results to support your answer.

Solution: Accesses to number_of_processes constitute a race condition. The increment
and decrement operations shown are actually three separate operations: load the shared variable,
modify it, and store it back in memory. Interleaving these operations produces wrong results.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 2 Solution

 4

Solution to 4a (continued): For example: say number_of_processes initially equals 4.
One process (P1) calls allocate_process(), while another (P2) calls
release_process(). The variable should therefore be 4 when both functions are
complete—but say the following happens:

• P1 reads 4

• P2 reads 4

• P1 increments number_of_processes: 4 à 5

• P2 decrements number_of_processes: 4 à 3

At this point, it doesn’t matter which process writes its value of number_of_processes
back to memory—the value will be wrong.

b. (8 points) Given a lock, mutex, with operations lock() and unlock(), indicate where

these operations would have to be used to prevent the race condition(s).

Solution: Each function should start with a call to lock() and end with a call to unlock()
(prior to returning).

4. (10 points) Servers are often designed to limit the maximum number of connections,
accepting up to N connections but forcing other requests to wait if that maximum number has
been reached. Explain how semaphores can be used to limit the number of simultaneous
connections.

Solution: The server can use a single semaphore initialized to the maximum number of allowed
connections. The server will call down() on the semaphore for each connection request,
decrementing the semaphore. Each time a connection is released, the server can call up() on the
semaphore, incrementing it. Once the maximum number of connections has been reached, all
requests will trigger a call to down() that will block until a connection is released and the up()
function is called.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 2 Solution

 5

5. (15 points, EECE.5730 only) The first known correct software solution to the critical-section
problem for two processes was developed by the Dutch mathematician Theodorus Dekker.
The processes share the following variables:

boolean flag[2]; // Both initially false
int turn;

The structure of process Pi (i == 0 or 1) is shown below. The other process is Pj (j == 1 or
0). Prove the algorithm shown below satisfies the following requirements for a critical
section:

1) Mutual exclusion: At most one process can execute its critical section at a time.
2) Progress: If multiple processes attempt to enter their critical sections at the same time,

one process is guaranteed to be selected and move forward.
3) Bounded waiting: Once a process P has requested access to its critical section, there

exists a bound on the number of times other processes will be allowed to access their
critical sections before P is given access to its critical section.

do {
 flag[i] = true;

 while (flag[j] == true) {
 if (turn == j) {
 flag[i] = false;
 while (turn == j)
 ; // do nothing
 flag[i] = true;
 }
 }

 /* critical section would be placed here */

 turn = j;
 flag[i] = false;

} while (true);

Solution: The algorithm satisfies the three conditions as follows:

• Mutual exclusion: The flag and turn variables satisfy this condition. If both processes
set their flag variable to true, only the process whose turn it is will move forward. The
other process will be forced to wait until the first process updates turn.

• Progress: The mechanism for allowing progress is as described above—turn chooses
the process to move forward if both attempt to enter the critical section simultaneously.

• Bounded waiting: Since one process sets turn to the value of the other process, it
ensures that the waiting process will be allowed to enter its critical section next.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 2 Solution

 6

6. (10 points, EECE.5730 only) Multithreading does not necessarily guarantee improved
performance over single-threaded versions of the same program. Provide one example of a
type of program that would run faster with multiple threads than it would with one thread,
and one example of a type of program that would not run faster with multiple threads.

Solution: Whether or not multiple threads improve performance depends largely on whether the
work in a program can be parallelized. Programs that perform the same operation across a large
set of data (for example, matrix arithmetic) can be easily parallelized and therefore will perform
better with multiple threads. Programs that are largely sequential (for example, a program
reading the contents of a file in order) would not run faster with multiple threads.

