
EECE.4810/EECE.5730: Operating Systems 
Spring 2017 
Homework 2 

Due 3:15 PM, Wednesday, 2/15/17 
Notes: 

• These problems were taken or adapted from Chapters 4 & 5 of our course text 
(Silberschatz, et al, Operating Systems Concepts, 9th edition) 

• While typed solutions are preferred, handwritten solutions are acceptable. 
• Any electronic submission must be in a single file. Archive files will not be accepted. 

o As noted in the syllabus, you will lose 10 points if you fail to follow this rule. 
• Electronic submissions should be e-mailed to Dr. Geiger at Michael_Geiger@uml.edu. 

Please include your name as part of your filename (for example, mgeiger_hw2.pdf). 
• EECE.4810 students must complete problems 1-4, for a total of 50 points. 
• EECE.5730 students must complete problems 1-6, for a total of 75 points. 

 
1. (15 points) A system with two dual-core processors has four processors available for 

scheduling. A CPU-intensive application (e.g., a program that spends most of its time on 
computation, not I/O or memory accesses) is running on this system. All input is performed 
at program start-up, when a single file must be opened and read sequentially. Similarly, all 
output is performed just before the program terminates, when the program results must be 
written sequentially to a single file. Between startup and termination, the program is entirely 
CPU-bound (e.g., only executing instructions). Your task is to improve the performance of 
this application by multithreading it. Specifically, you must determine: 

• (7 points) How many threads will you create to handle input and output? Briefly explain. 

• (8 points) How many threads will you create for the CPU-bound portion of the 
application? Briefly explain. 

 
 
2. (10 points) Consider the code segment below. The thread_create() function starts a 

new thread in the calling process. (For the purpose of this problem, you can ignore the lack 
of arguments to that function.) How many unique processes are created? How many unique 
threads are created? 

 
 pid_t pid; 
 
 pid = fork();  
 if (pid == 0) {    // Child process 
  fork(); 
  thread_create( . . . ); 
 } 
 fork(); 

 
  



EECE.4810/EECE.5730: Operating Systems  Instructor: M. Geiger 
Spring 2017  Homework 2 

 2 

3. (15 points) Consider the code example for allocating and releasing processes shown below. 
Note that the functions are not complete—comments show where detailed code would be 
required to allocate and release process resources. This code would be part of the kernel. 

 
#define MAX_PROCESSES 255 
int number_of_processes = 0; 
 
/* An implementation of fork() would call this function */ 
int allocate_process() { 
 int new_pid; 
 
 if (number_of_processes == MAX_PROCESSES) 
  return -1; 
 else { 
   
  // Code to allocate process resources and assign new_pid 
 
  ++number_of_processes; 
  return new_pid; 
 } 
} 
 
/* An implementation of exit() would call this function */ 
void release_process() { 
  
 // Code to release process resources 
 
 --number_of_processes; 
} 

 
a. (7 points) Identify the race condition(s) in these two functions, assuming each function could 

be called by one (or more) kernel threads.. (In other words, determine what operation(s) 
involving shared data depend on the timing or ordering of different threads.) Give an 
example of the race condition causing incorrect results to support your answer. 
 

b. (8 points) Given a lock, mutex, with operations lock() and unlock(), indicate where 
these operations would have to be used to prevent the race condition(s). 
 
 

4. (10 points) Servers are often designed to limit the maximum number of connections, 
accepting up to N connections but forcing other requests to wait if that maximum number has 
been reached. Explain how semaphores can be used to limit the number of simultaneous 
connections. 
 

  



EECE.4810/EECE.5730: Operating Systems  Instructor: M. Geiger 
Spring 2017  Homework 2 

 3 

5. (15 points, EECE.5730 only) The first known correct software solution to the critical-section 
problem for two processes was developed by the Dutch mathematician Theodorus Dekker. 
The processes share the following variables: 
 
boolean flag[2];  // Both initially false 
int turn; 
 
The structure of process Pi (i == 0 or 1) is shown below. The other process is Pj (j == 1 or 0). 
Prove the algorithm shown below satisfies the following requirements for a critical section:  
 
1) Mutual exclusion: At most one process can execute its critical section at a time. 
2) Progress: If multiple processes attempt to enter their critical sections at the same time, 

one process is guaranteed to be selected and move forward. 
3) Bounded waiting: Once a process P has requested access to its critical section, there 

exists a bound on the number of times other processes will be allowed to access their 
critical sections before P is given access to its critical section. 

 
do { 
 flag[i] = true; 
  
 while (flag[j] == true) { 
  if (turn == j) { 
   flag[i] = false; 
   while (turn == j) 
    ;  // do nothing 
   flag[i] = true; 
  } 
 } 
 
  /* critical section would be placed here */ 
 
 turn = j; 
 flag[i] = false; 
 
} while (true); 

 
 
6. (10 points, EECE.5730 only) Multithreading does not necessarily guarantee improved 

performance over single-threaded versions of the same program. Provide one example of a 
type of program that would run faster with multiple threads than it would with one thread, 
and one example of a type of program that would not run faster with multiple threads. 

 
 


