
EECE.4810/EECE.5730: Operating Systems
Spring 2017

Homework 1 Solution
Due 3:15 PM, Wednesday, 2/1/17

1. (10 points)
a. (3 points) Briefly describe the characteristics of zombie and orphan processes.

Solution: A zombie process is a process that has terminated, but its parent has not yet read its
exit status (using wait()), so the zombie process still maintains some minimal state in the
system’s job queue.

An orphan process is an active process for which the parent has terminated without invoking
wait(), meaning the orphan process may remain active even after the parent has finished.

b. (3 points) When a process becomes a zombie, what information about that process is still

maintained in the operating system? Why?

Solution: When a process becomes a zombie, its process ID, exit status, and entry in the job
queue (or process table) remain, so that a parent process can check the exit status to ensure the
process terminated without errors.

c. (4 points) Are there conditions under which you would want a process to be orphaned? If so,

give an example of a good situation in which a process should be orphaned.

Solution: A process should be orphaned if it is a long-running task that does not require further
attention from the user, or if it is an indefinitely running service, such as a daemon system
process intended to run in the background without user control.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 1

 2

2. (15 points) List the five states in which a process can exist, describe why a process would
transition into that state, and describe why a process might transition out of that state.

Solution: The five states are:

• New: Processes enter this state when they are first started, and transition out of this state
as soon as they have been appropriately set up.

• Running: A process transitions into this state every time it is moved to the CPU to
execute instructions, and transitions out of this state every time it leaves the CPU, either
to wait for another device, to wait for an event, or because its CPU time has expired.

• Waiting: A process enters this state when it is waiting for some event—such as an
interrupt, the termination of a child process, or access to an I/O device. It transitions out
of the waiting state as soon as the desired event occurs.

• Ready: A process enters this state when it is waiting for access to the CPU to execute
instructions. It leaves this state when it transitions to the running state and is actually able
to execute code.

• Terminated: A process enters this state once it has exited; it leaves this state once its
resources (memory, files, process control block) have been deallocated and its exit status
has been checked by its parent process.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 1

 3

3. (10 points) For the program below, assume the parent process has process ID (PID) 4810,
and the child process has PID 5730. If the getpid() function returns the PID of the
currently executing process, what will the program print?

int main() {
 pid_t pid, pid1;

 pid = fork();
 if (pid == 0) {
 pid1 = getpid();
 printf("child: pid = %d\n", pid);
 printf("child: pid1 = %d\n", pid1);
 }
 else if (pid > 0) { // Parent process
 pid1 = getpid();
 printf("parent: pid = %d\n", pid);
 printf("parent: pid1 = %d\n", pid1);
 wait(NULL);
 }
 return 0;
}

Solution: Recall that the fork() function copies the currently running process, making that
process a parent process and the copy a child process. fork() returns 0 to the child process and
the PID of the child (5730, in this case) to the parent.

We can’t determine the exact order in which the parent and child print their information because
the wait() system call in the parent process isn’t called until after the two printf()
statements. However, we can determine what each process alone prints:

Parent prints:
parent: pid = 5730
parent: pid1 = 4810

Child prints:
child: pid = 0
child: pid1 = 5730

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 1

 4

4. (15 points) Briefly describe each of the components of a process control block and explain
why the operating system needs to track each of these pieces of information.

Solution: A process control block (PCB) contains the following information:

• Process ID: used to identify this process

• Process state: used to determine in which queue the process currently resides and to
where it can transition

• Memory limits: lowest and highest accessible memory addresses for this process, used to
ensure code/data accesses are valid

• Scheduling information: used to determine how/when a process will be scheduled for
execution when it is ready

• I/O status info: tracks devices accessible to process

• Open files: allows process to determine what files it can actually access
In addition, the PCB contains copies of the following information, which is updated on every
context switch but not kept up to date while the process is executing. Saving these data allow a
process to pick up where it left off the next time it is context switched back onto the CPU:

• Program counter: address of the next instruction to be executed

• Register copies: copies of the general-purpose and special-purpose register values used
by the process, which (along with the program counter) represent the state of the process.

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 1

 5

5. (15 points, EECE.5730 only) Including the initial parent process, how many separate
processes are created by the program shown below? Draw a process tree showing all of the
processes created to help explain your answer.

int main() {
 for (int i = 0; i < 4; i++)
 fork();

 return 0;
}

Solution: The program creates a total of 16 process, since each fork() call creates a second copy
of the currently running process. The number of processes therefore double for each loop
iteration (1à2, 2à4, 4à8, 8à16). The process tree below illustrates this process:

EECE.4810/EECE.5730: Operating Systems Instructor: M. Geiger
Spring 2017 Homework 1

 6

6. (10 points, EECE.5730 only) What will the program below print?

int nums[5] = {0,1,2,3,4};

int main() {
 int i;
 pid_t pid;

 pid = fork();

 if (pid == 0) {
 for (i = 0; i < 5; i++) {
 nums[i] *= -i;
 printf("CHILD: %d\n", nums[i]);
 }
 }
 else if (pid > 0) {
 wait(NULL);
 for (i = 0; i < 5; i++)
 printf("PARENT: %d\n", nums[i]);
 }
}

Solution: Remember that a fork() system call creates two copies of the existing process,
including its address space. That means that each process gets its own copies of all data declared
in the process, even if those variables are declared globally. The parent process therefore never
changes its nums[] array—those values only change in the child process.

Since the parent waits for the child before printing its array contents, the program prints:

CHILD: 0
CHILD: -1
CHILD: -4
CHILD: -9
CHILD: -16
PARENT: 0
PARENT: 1
PARENT: 2
PARENT: 3
PARENT: 4

