
 1

EECE.4810/EECE.5730: Operating Systems
Spring 2017

Midterm Exam
March 8, 2017

Name: ___

Section: EECE.4810 (undergraduate) EECE.5730 (graduate)

For this exam, you may use two 8.5” x 11” double-sided page of notes. All electronic devices
(e.g., cell phones, calculators, laptops) are prohibited. If you have a cell phone, please turn it off
prior to the start of the exam to avoid distracting other students.

The exam contains 6 questions for a total of 100 points. Please answer the questions in the spaces
provided. If you need additional space, use the back of the page on which the question is written
and clearly indicate that you have done so.

Please note that students enrolled in EECE.5730 must complete three extra problems, which are
worth a total of 20 points:

• Question 1d, on page 4
• Question 3c, on page 7
• Question 6d, on page 15

You will have three hours to complete this exam.

Q1: Process management / 19 + 6
Q2: Inter-process communication / 10
Q3: Multithreading / 11 + 6
Q4: Synchronization / 21
Q5: Scheduling / 20
Q6: Memory management / 19 + 8

TOTAL SCORE / 100 + 20

 2

1. (19 + 6 points) UProcess management
Parts (a) and (b) of this problem refer to the following program:

int main() {
 pid_t pid1, pid2;

 pid1 = fork();
 if (pid1 == 0) {
 pid2 = fork();
 if (pid2 > 0) {
 wait(NULL);
 printf("1\n");
 }
 else
 execlp("/bin/ls", "ls", NULL);
 }
 else if (pid1 > 0) {
 printf("2\n");
 }
 return 0;
}

a. (9 points) How many unique processes does this program create, including the initial

process? Draw a process tree to support your answer.

 3

1 (continued)
Program to which part (b) refers:

int main() {
 pid_t pid1, pid2;

 pid1 = fork();
 if (pid1 == 0) {
 pid2 = fork();
 if (pid2 > 0) {
 wait(NULL);
 printf("1\n");
 }
 else
 execlp("/bin/ls", "ls", NULL);
 }
 else if (pid1 > 0) {
 printf("2\n");
 }
 return 0;
}

b. (5 points) Will any of the created processes become zombie processes after their termination?

If so, explain which one(s) and why; if not, explain why not.

 4

1 (continued)
c. (5 points) How does the operating system differentiate between processes in the ready and

waiting states?

d. (6 points, EECE.5730 only) Suppose a single parent process creates five different child

processes. When each child terminates, the parent process should handle each one in a
different, specific way. Describe how the parent process can determine which child
terminates so it can handle each one appropriately.

 5

2. (10 points) Inter-process communication
a. (6 points) Describe how the two major classes of inter-process communication use memory.

In your answer, describe (i) what types of data or data structures are used to exchange
information, and (ii) in which address space these data are stored.

b. (4 points) Explain why indirect communication is often favored over direct communication
for message passing inter-process communication.

 6

3. (11 + 6 points) Multithreading
a. (6 points) Explain why each thread in a multithreaded process needs its own (i) program

counter, (ii) register copies, and (iii) stack.

b. (5 points) Given the two threads below, is it possible for x to be equal to 4 and y to be equal

to 2 when both threads are done? If so, explain how; if not, explain why not.

Thread 1 Thread 2
x = 4 y = 5
x = y + 2 y = x - 2

 7

3 (continued)
c. (6 points, EECE.5730 only) Explain how (i) two threads in the same process could easily

share data, and (ii) how each of those two threads can protect its data from the other thread.
Your answer should not require any special mechanisms for sharing—placing the data
appropriately should be sufficient.

 8

4. (21 points) Synchronization
a. (5 points) Explain what busy waiting is and how it is typically avoided when processes need

to wait for access to a synchronization primitive (lock, condition variable, etc.)

 9

4 (continued)
b. (8 points) The example code below shows a pair of processes (one reader, one writer) that

use semaphores to allow (i) multiple reader processes to run simultaneously, while also
ensuring (ii) the writer process can only enter its critical section if no readers are executing.
Assuming the two semaphores rwSem and rcSem are initialized to 1, and rdCnt is
initialized to 0, explain how the two semaphores enable conditions (i) and (ii) above.

Reader process
do {
 down(rcSem);
 rdCnt++;
 if (rdCnt == 1)
 down(rwSem);
 up(rcSem);

 /* read shared data */

 down(rcSem);
 rdCnt--;

 if (read_count == 0)
 up(rwSem);
 up(rcSem);
} while (true);

Writer process
do {
 down(rwSem);

 /* write shared data

 up(rw_mutex);

} while (true);

 10

4 (continued)
c. (8 points) Consider a multithreaded bank software package in which the following function is

used to transfer money. Assume that the program contains a global array of locks, locks[],
with one entry per account number, such that locks[i] is the lock for account number i.

void transfer_money(int src_acct, int dest_acct, int amt) {
 locks[src_acct].lock(); // Lock account sending money
 locks[dest_acct].lock(); // Lock account receiving money
 <transfer money>
 locks[dest_acct].unlock();
 locks[src_acct].unlock();
}

Explain how this function can deadlock if called in multiple threads, and rewrite (in pseudo-code
or actual code) the function to remove the deadlock condition.

 11

5. (20 points) Scheduling
Consider the following set of processes, with the length of the CPU burst time given in
milliseconds. Processes may begin executing 1 ms after they arrive (i.e., a process arriving at
time 5 could start executing at time 6). Any process arriving at time 0 is in the ready queue when
the scheduler makes a decision about the first process to run.

Process Burst Priority Arrival time
P1 10 1 0
P2 3 4 0
P3 7 2 2
P4 1 2 4
P5 5 3 6

Determine the turnaround time for each process using each of the following scheduling
algorithms: (i) first-come, first-serve (FCFS), (ii) shortest job first (SJF), (iii) shortest time to
completion first (STCF), (iv) round-robin (RR) with time quantum = 1 ms, and (v) a non-
preemptive priority scheme in which lower numbers indicate higher priority.
To break ties between processes (same burst time/priority), use first-come, first-serve ordering.

You may use space on both this page and the following page to solve this problem. The list of
processes is copied on the next page for your reference.

 12

5 (continued)
List of processes:

Process Burst Priority Arrival time
P1 10 1 0
P2 3 4 0
P3 7 2 2
P4 1 2 4
P5 5 3 6

 13

6. (19 points) Memory management
a. (4 points) Describe one benefit of base and bounds memory management over segmentation,

and one benefit of segmentation over base and bounds.

b. (5 points) Say the currently running process has 16 active pages, P0-P15, all of which have

their reference bits set to 1. If the operating system uses the clock algorithm for page
replacement, the pages are ordered numerically around the “clock” (P0 is first, P1 is second,
etc.), and the “clock hand” currently points to P6, which page will be replaced if a frame is
needed to bring in a new page? Explain your answer for full credit.

 14

6 (continued)
c. (10 points) A portion of the currently running process’s page table is shown below:

Virtual
page # Valid bit Reference

bit Dirty bit Frame #
7 1 1 1 3
8 0 0 0 --
9 1 0 1 4

10 0 0 0 --
11 1 1 0 0
12 1 1 0 1

Assume the system uses 20-bit addresses and 16 KB pages. The process accesses four addresses:
0x25FEE, 0x2B149, 0x30ABC, and 0x3170F.
Determine (i) which address would cause a page to be evicted if there were no free physical
frames, (ii) which one would mark a previously clean page as modified, if the access were a
write, and (iii) which one accesses a page that has not been referenced for many cycles. For full
credit, show all work.

 15

6 (continued)
d. (8 points, EECE.5730 only) Consider a system with 48-bit virtual addresses and 32-bit

physical addresses. The system uses 4 KB pages. Assume each page table entry requires 4
bytes to store. Also, assume the currently running process is using only 16 KB of physical
memory—the lowest-addressed 8 KB of its virtual address space, and the highest-addressed
8 KB of its virtual address space.

If this process uses a two-level page table, and the first- and second-level page tables each use
the same number of entries, how much space will that page table require given all of the
information above? Show all of your work for full credit.

